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Numerical solutions are presented for the problem of steady laminar combined convection 
flows in vertical parallel-plate ducts, with linearly varying wall temperatures. Neglecting 
streamwise diffusion in the analysis leads to a parabolic set of governing equations. These 
are solved using a marching technique for an implicit finite-difference scheme with vorticity, 
streamfunction, and temperature as independent variables. Various values of the governing 
parameter, the Grashof number, Gr, are considered, including the forced convection 
solution, Gr = 0, while the Prandtl number, Pr, is set at a value of unity in order to present 
the numerical method. As the value of IGrl increases, reverse flow regions appear that are 
present in the fully-developed flow ; these are dealt with using a modification of the standard 
marching technique. Results are obtained in terms of velocity profiles, local Nusselt numbers, 
flow average temperatures, and friction factors, and the comparative strengths of the 
recirculation regions are assessed. A simple correlation is given for the development lengths, 
in terms of Gr, for Pr = 1. 
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I n t r o d u c t i o n  

The problem of obtaining numerical solutions for mixed 
convection flows between vertical parallel plates where the 
temperature on the walls varies linearly with height is relevant 
to, for example, the modeling of oil wells, which can be 
considered to be ducts subjected to a geothermal gradient. In 
practice such problems may involve three-dimensional (3-D) 
geometries, annular flows, and complicated rheological 
properties of the multiphase fluids. However, a first 
approximation is required for the problem that exhibits some 
of the important properties of the full model. Hence, in order 
to develop the numerical methods required, a parallel-plate 
geometry is used. Previous studies of developing flows have 
concentrated on the forced convection case, although Ostrach 
(1954), Morton (1960), and Beckett (1980), among others, 
studied the kinematically and thermally fully developed mixed 
convection flow in various geometries, showing that the flow 
profiles may vary dramatically from the isothermal flow case 
even for moderate heating or cooling. It can be shown that the 
fully developed flow is the same as that for constant heat flux 
at the walls (Morton 1960), and this was studied by Sherwin 
(1968) and Maitra and Subba Raju (1975) for annular flows. 
It is important to note that fully developed flows only exist in 
these flows if it is assumed that all physical quantities, except 
the density, do not depend on the temperature (see, for example, 
Chato and Lawrence 1964). The effect of natural convection 
on the flow is governed by the Rayleigh number, Ra, and for 
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sufficiently large values of IRal recirculation regions are present. 
It can be shown that when the temperature decreases with 
height, "thermal runaway" occurs at critical values of Ra (Jones 
1992; Morton 1960; Ostrach 1954), the first being 0(102) 
(Jones 1992). Reverse flow is exhibited adjacent to the duct 
walls for large enough values of Ra below this first critical value 
of Ra (Jones and Ingham, 1991 ; Jones 1992). Beckett (1980) 
and Rokerya and Iqbal (1971 ) investigated the effect of viscous 
dissipation on the flow, showing that the velocity does not 
become infinite, but is multiple-valued near the critical values 
of Ra and that increasing the viscous dissipation decreases the 
flow rate for a given pressure gradient. Conversely, when the 
temperature increases with height, the velocity remains finite 
for all values of Ra and reverse flow regions appear initially at 
the center of the duct (Jones and Ingharn 1991 ; Jones 1992). 

The choice of numerical approach used in modeling 
combined convection flows depends on whether the magnitudes 
of the streamwise diffusion terms are considered negligible or 
significant. The comparative magnitude of the streamwise 
diffusion terms with respect to the advection, inertia, and 
transverse diffusion terms is dependent on the magnitudes of 
the Reynolds number, Re, and the P6clet number, Pc. It can 
be shown (Ingham et al. 1988a and 1988b) that the streamwise 
diffusion terms are negligible for Re, Pe >> 1, which is the 
situation considered in this paper. The resulting equations are 
of a parabolic nature and hence can be solved using 
finite-difference techniques to find the solution at successive 
streamwise locations. Parabolic methods have been used for 
problems where the wall temperature varies in the streamwise 
direction (Aung and Worku 1987; Jones and Ingham 1991 ), 
and by solving the corresponding elliptic equations it can be 
shown that the parabolic solution method produces a good 
approximation of the flow for Re=0(102) .  Hence it is 
reasonable to assume that the parabolic approach provides a 
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suitable approximation of the flow in the cases under 
consideration. 

In this study the problem is formulated in a similar manner 
to the work performed by Ingham et al. (1988a) in terms of a 
nondimensional streamfunction, vorticity, and temperature. 
There are no difficulties in extending the analysis when primitive 
variables are used and the choice of a streamfunction-vorticity 
formulation is just a preference of the authors. In general, the 
use of a streamfunction-vorticity formulation in two- 
dimensional (2-D) and axisymmetric flows avoids difficulties 
in conserving fluid and the use of a pressure-correction 
equation. The solution procedure that is used is of a marching 
type in which the direction of the marching may be varied and 
the governing parameters are the Prandtl number, Pr, and the 
Grashof number, Gr = Ra/Pr .  For  the simple case where the 
flow is always in the direction of the entrance velocity, the 
finite-difference equations are solved, from the duct entrance 
into the region of fully developed flow, using an implicit method. 
This basic marching method uses only information from the 
previous streamwise location together with the boundary 
conditions on the walls, and hence only an inlet condition is 
needed in the streamwise direction. Recirculation regions have 
been observed experimentally by Morton et al. (1989) for the 
case of a pipe with a constant wall temperature over a finite 
length of pipe. The finite-difference technique described above 
becomes numerically unstable a few streamwise steps into a 
reverse flow region, as a result of neglecting vital upstream 
information. Developing flows have been studied by a large 
number of authors, both for the constant wall temperature case 
(Aung et al. 1972; Aung and Worku 1986; Bodoia and Osterle 

1962; Collins 1980; E1-Shaarawi and Sarhan 1980; Habchi and 
Acharya 1986; Hashimoto et al. 1986; Sherwin and Wallis 
1971 ; Sparrow et al. 1984) and for the constant heat flux case 
(Aung and Worku 1987; Penot and Dalbert 1983). None of 
these papers was able to obtain solutions for anything but very 
weak flow reversals. Cebeci et al. (1982) computed reverse flow 
solutions by solving the boundary-layer equations and using 
the approximation of Reyhner and FliJgge-Lotz (1968), while 
Yao (1983) obtained an analytical solution near the entrance 
region of a channel for both the above cases, but did not deal 
with flow reversal. Ingham et al. (1988a) overcame the problem 
of numerical stability in reverse flows for the case where 
constant wall temperatures are applied, by using an iterative 
technique similar to that used by Williams (1975) for a 
boundary-layer flow. 

No experimental data are available for developing mixed 
convection flows in pipes and ducts where the temperature on 
the walls vary linearly with height, even though this problem 
has numerous applications in the oil industry, e.g., the flow of 
muds and cements down oil wells during drilling and cementing. 
Because of this lack of experimental data on this problem, the 
aim of the present work is to develop a simple model for the 
developing mixed convection flow between vertical parallel 
plates where the temperature varies linearly with height, to 
describe a robust computational scheme, and to identify the 
parameter ranges in which various types of solutions are 
possible. In particular, the presence of reverse flows in the 
cementing process of oil wells causes the on-site engineer many 
problems. In order to be able to make any progress on this 
problem, some simplifying assumptions have to be made, in 

N o t a t i o n  

d Half-width of the duct 
f Friction factor 
g Gravitational acceleration 
Gr Grashofnumber,  #fl2d3/v 2 
h Local heat transfer coefficient of the fluid 
I First transverse point of forward flow 
H Finite-difference step size across the duct 
k Thermal conductivity of the fluid 
K Finite-difference step size along the duct 
m Streamwise location in the blending region 
M Number of variables in iteration procedure, 

(3N - 1){jr + n - J b  + 1) 
n Number of streamwise finite-difference steps in the 

blending region 
N Number of finite-difference steps across the duct 
N N  Number of finite-difference steps along the duct 
Nu Nusselt number, hd/k 
P Point in Figure 2 at which the approximation predicts 

forward flow and the final solution predicts reverse 
flow 

Pe Prclet number, RePr 
Pr Prandtt number, v/ct 
Ra Rayleigh number, GrPr  
Re Reynolds number, dvm/V 
T Temperature 
u Transverse velocity component 
U Dimensionless transverse velocity component, u/v= 
v Streamwise velocity component 
V Dimensionless streamwise velocity component, v/v= 
W Width of the recirculation region 
x Transverse coordinate 

X Dimensionless transverse coordinate, x/d 
y Streamwise coordinate 
Y Dimensionless streamwise coordinate, y / (dRe)  

Greek symbols 

~t Molecular thermal diffusivity of the fluid 
/~ Coefficient of thermal expansivity of the fluid, 

(-- 1/po)(t~p/~T) 
Convergence parameter for the iteration process 
Parameter for the doubling of the streamwise step 
length 

e Convergence parameter for the marching process 
Temperature gradient applied to the walls 

v Kinematic viscosity of the fluid 
p Density of the fluid 

Characteristic difference between solutions at Yf and 
as Y ~ o o  

0 Dimensionless temperature, (T - To)/(Re2 ) + 
y/(dRe) 
Dimensionless streamfunction 
Dimensionless vorticity 

Subscripts 

b Value at the beginning of the reverse flow region 
dev Development length 
div Value at the transverse extreme of the reverse flow 

region 
f Value at the end of the marching region 
i Transverse finite-difference suffix 
j Streamwise finite-difference suffix 
m Flow average value 
w Value at the wall 
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particular the following: 

(1) All physical quantities except the density do not depend 
on the temperature. If this assumption is not made, then there 
is no fully developed flow solution (see Chato and Lawrence 
1964). In some circumstances this may not be a good 
approximation; for example, Collins et al. (1977) found that 
for oils the variation with temperature of the viscosity was just 
as important as the density changes. However, Scheele and 
Hanratty (1962) stated that their "experiments indicated that 
changes in the flow field resulted primarily from natural 
convection effects rather than viscosity variations." Because no 
experimental data are available at the moment, and because 
we are interested here in the general trends rather than detailed 
predictions, this assumption appears to be reasonable. 
(2) The wall temperatures are specified. In practice, heat flow 
in the walls of the channel will take place, and in the drilling 
of oil wells the linear variation of the temperature with depth 
from the surface will only be achieved at large distances from 
the position at which drilling takes place. Thus in general a 
beat-flux boundary condition should be applied, and this will 
involve a parameter that involves the thermal conductivities 
and heat transfer coefficients of the relevant materials. 
Therefore, in order to reduce the number of parameters involved 
in the problem, the wall temperatures are specified. 
(3) The Prandtl number is unity. In practice, Prandtl numbers 
of fluids tend to be greater than unity ; for the muds and cements 
that are used in drilling and cementing, the Prandtl number is 
typically 0 (102). However, in order to compare the results with 
existing published works, a Prandtl number of unity has been 
taken. 
(4) The fluid flow is stable. However, it has for a long time 
been known that these types of flows are prone to instabilities 
(see, for example, Barozzi et al. (1984) and Yao (1987)). 
Barozzi et al. (1984), and the references contained there, 
indicate that instabilities in the flow are possibly related to a 
minimum value of the local Nusselt occurring, although this is 
not entirely borne out by Morton et al. (1989). The study of 
instabilities occurring in this kind of flow is beyond the scope 
of this paper, since no experimental data are available to test 
any theoretical predictions. 
(5) The flow is Newtonian. In practice, muds and cements are 
non-Newtonian fluids, and this effect is at present under 
investigation. 

Since at the moment we are interested in general trends rather 
than detailed predictions, and since no experimental data are 
available, the number of parameters occurring has been reduced 
to a minimum, and all the above assumptions are reasonable. 

Ingham et al. (1988b) attempted to solve situations akin to 
those studied in this paper, namely, mixed convection flows in 
a vertical duct with the temperature on the walls varying linearly 
with height. However, they neglected to set an upstream 
condition, using only the initial approximate boundary 
condition. Although this nonrigorous method gives surprisingly 
accurate results in the presented cases, it relies on the precision 
of the initial approximation and is therefore not considered 
adequate for use in the present case. In this paper, a fully 
developed boundary condition is used upstream in the 
recirculation region, and a blending region between this 
upstream boundary condition and the initial approximation is 
required to ensure the stability of the numerical scheme. 

Complete solutions have been obtained for developing flows, 
including situations where flow separation occurs. The results 
that are achieved show good agreement with the analytical 
results obtained for the kinematically and thermally fully 
developed flow region (Jones 1992). 

Combined convection in a vertical duct: A. T. Jones and D. B. Ingham 

T h e  m o d e l  a n d  g o v e r n i n g  e q u a t i o n s  

Consider the steady laminar convection flow of a Newtonian 
fluid between two vertical parallel plates at x = _+ d, 0 ~< y < 0% 
where y is measured vertically downwards, as illustrated in 
Figure 1. It is assumed that the fluid flows through a 
constriction at y = 0 in a fashion that causes the velocity at 
y = 0 to be uniform. The velocity is given by (0, Vm) at y = 0 
and (u, v) for y > 0, the velocity components being in the x- and 
y-directions, respectively. The walls are maintained at a uniform 
temperature gradient, 2/d, so that the temperature on the walls, 
T,, is given by Tw = To - 2y/d, where To is the temperature 
of the wall at the inlet, y = 0. The fluid and the walls are 
considered to have the same temperature at the inlet, so that 
the buoyancy effects are caused only by the presence of the 
temperature gradient. 

All the physical properties of the fluid, except density, are 
assumed to be constant; the Boussinesq approximation is used, 
and viscous dissipation is neglected in the energy equation, 
since this can be shown to have only a small effect at the values 
of Ra considered here. However, viscous dissipation must be 
included for negative values of the Rayleigh number of 0(102 ) 
(Jones 1992). It is assumed that the temperature gradient is 
great enough for the effects of natural and forced convection 
to be of the same order of magnitude. 

The governing equations are the continuity, transverse 
momentum, and energy equations; these can be simplified as 
shown by Jones and Ingham (1991) to the following 
non-dimensional form 

025 
- (1 )  

OX 2 

0~ 0~ 01]/ 0~ 02~r~ 00 
Gr - -  (2) 

OXOY OYOX OX 2 OX 

pr(&p ( 0 0 )  0 ~ 0 )  020 
\ ~  \ ~  - 1 - (3) 

0Y ~ 0 x  2 

The Prandtl number is given by Pr = v/o~ and Gr = gfl,~d3/v 2 
is the Grashof number, where fl = ( - 1 / p o ) ( O p / O T )  is the 
coefficient of thermal expansivity, Po is the density, = is the 
molecular thermal diffusivity of the fluid, and g is the 
gravitational acceleration. 

The coordinates X, Y are nondimensional and are given by 
x = dX  and y = Re d¥, respectively. The scaling with respect 
to the Reynolds number in the vertical direction ensures that 
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A schematic diagram of the f low geometry 
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the flow development lengths are 0(1) as R e ~ .  The 
nondimensional streamfunction, vorticity, and temperature--  
@, f ,  and 0, respectively--are defined as follows: 

U . . . .  V - (4) 
Re d Y' dX 

~3V 1 0U 
n = (5) 

0X Re 0Y 

T-To  
0 - - -  + Y (6) 

2 Re 

where Re = vmd/v is the Reynolds number, Vm is a characteristic 
velocity, taken to be the mean streamwise velocity in this study, 
and v is the kinematic viscosity; U and V are the 
nondimensional velocities defined by 

U =- v m U  , V = V m V  ( 7 )  

The simplification that is required in order to obtain the 
governing equations 1 to 3 relies on the fact that the streamwise 
diffusion terms are 0(1/Re2),  so for Re>> 1 and Pr = 0 ( 1 )  
these terms can be neglected. 

By utilizing the symmetry of the problem about x = 0, 
0 ~< y < 0% the solution domain can be reduced to the half-duct, 
0 ~< x ~< d, 0 ~< y < o% and the nondimensional boundary 
conditions are as follows: 

(O=o, f = 0  
A t X = 0  O < Y ~ o o  • t O 0 = 0  (8) 

t0x 
/0=1,0=0 

A t X =  1 0~< Y <  ~ ,/a~9 = 0  (9) 

0=0 (lO) A t Y = 0  0~<X~<I  ~ , = X ,  t 3 = 0 ,  

where ~ is arbitrarily set to zero on X = 0. 
Hence, Equations 1 to 3 describe the flow and are solved 

subject to the boundary conditions 8 to 10. 

The numerical scheme, including reverse f low 
s i t u a t i o n s  

A finite-difference approach is used to solve the equations. The 
most appropriate scheme was found to be a fully implicit scheme 
with backward differencing in the streamwise direction and 
central differencing in the transverse direction. This is modified 
in the reverse flow regions. 

F o r w a r d  f l o w  reg ions  

Using the above scheme, the finite-difference forms of Equations 
1 to 3 are 

1 
f i , j + l  = ~ ( ,~ t i+ l , j+ l  - -  2~k~.j+~ + ~//i- 1,j+ 1) (11) 

1 
2HK [(~i+1j+1 - ~/i-- l , j+ l ) ( f i , j +  l - -  ~ i , j )  

- -  ( f i + l , j + l  - -  f i -  l , j+ l ) (  ~li,j+ l - -  ~Ai,j) ] 

1 
- H2 ( f i + L j + l  -- 2f/ij+ 1 + f i - l . j + l )  

Gr 
- 2 H  ( O i + l . j + l  - -  0 i - , j + l )  (12) 

1 
- -  [ ( ~ i "  l . j+ 1 - -  ~ i -  1 j+  l )(  OLj+ l - -  OLj) 
2HK 

- ( 0 i +  , , j+  1 - 0~_ l j + ,  ) ( ~ % +  ~ - ~ i . j ) ]  

1 

2H (~bi+lj+l - ~ i - l j + l )  

1 
- -  (Oi+l.j+l -- 20ij+l + Oi-1 j+ l )  (13) 

PrH z • . 

where the suffixes ( i , j )  refer to the point X = (i - 1 )H on the 
jth streamwise locations and H, K are the constant transverse 
and variable streamwise step sizes, respectively. Defining the 
number of steps across the half-duct, 0 ~< X ~< 1, to be N, sets 
H = 1/N. The number of streamwise steps, NN,  is chosen so 
that the flow has converged to within a given tolerance of the 
fully developed flow, given by Jones (1992) as 

Ra t,/4 
v ( x )  = 

tan Ra tz/4 - tanh Ra t ' /4 

(¢os(RaY'/aX) cosh(Ra'X/4X !'~ 

× \ cos Ra t~/4 cosh Ra tl/4 ,/ (14) 

1 
O ( X )  = 

Rat~/4(tan Ra t~/4 - tanh Ra t~/4) 

x \( c°s(Ra*l/'*X)~osR~fi~ t- c°sh(Ratl/4X)cosh Ra *1/4 2)  (15) 

where Ra t = - R a ,  so Ra* 1/4 can take real or complex values. 
The values of Ra for which flow reversal first occurs in the fully 
developed flow can be deduced from Equation 14. Flow reversal 
near the wall initially occurs when dV/dX[x= x = 0 ,  i.e., 
Ra = - 31.3, while flow reversal at the center of the duct occurs 
first when VIx= o = 0, i.e., Ra = 4rc4= 389.6. Hence, flow 
reversals occur for Ra > 389.6 and Ra < -31 .3 .  However, at 
values of Ra above 6234.2 and below -913.9,  the flow profiles 
have more than one recirculation region in the fully developed 
flow and are not considered here. 

The boundary conditions 8 and 9 are 

~OLj+ 1 = 0, f L j + l  = 0 (16) 

~ / N + I , j + '  = 0 ,  ON+I.j+ 1 = 0 (17) 

and OLj is evaluated using the Taylor expansion about X = 0. 
Hence, the expression 

30Lj+I - 402j+1 + 03, j+  1 ~- 0 (18) 

is accurate to 0(H4), and so the accuracy is consistent with 
the numerical scheme. Finally, fiN+ Lj+X can be deduced from 
Equation 9 by using the Taylor expansion for f and ¢ about 
X = 1 together with a backward difference equation for Of/OX 
at X = 1, leading to 

3 1 + o ( n  2) (19) nN+Li+ , = - - / /5  (1 - ~ON,j+t)-- ~ f N j + I  

Equations 11 to 13 and 16 to 19 define 3N - 1 equations with 
3 N -  1 unknowns and can be solved provided that the 
equations are linearized to provide an explicit form for the 
finite-difference variables at the j + l th step. To do this, the 
transverse derivatives of $, 0, and ~ are evaluated at the j th 
step instead of the j + l th step whenever they are multiplied 
by a streamwise derivative. Equations 11 to 13 and 16 to 19 
then define a set of simultaneous linear equations in the 
finite-difference variables at the j + l t h  step; Gaussian 
elimination may then be used to solve the problem at this 
streamwise step. 
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As the value of IGr[ increases, free convection effects increase 
and hence the kinematic and thermal development lengths 
increase. The scheme is modified to allow for the doubling of 
the streamwise step-size to ensure that the accuracy of the 
solution in the entry region is sufficient while reasonable 
computation times and storage requirements are maintained. 
At certain intervals, the solution at the j + lth streamwise 
location is recalculated with a step-size of 2K. In practice, this 
need only be repeated at most once every five steps. The 
step-length is doubled if the following criterion is satisfied : 

3N--- 1 

+ x/(O,.K+I - O,2,jx+,) =] < e (20) 

where the superscripts refer to the step-size with which the 
variables were calculated, and 8 is usually taken to be about 
10- 3. This adaptation to the technique drastically increases the 
step-size towards the fully developed region. 

Reverse f l ow  regions 

Reverse flow regions appear, either near the wall or at the center 
of the duct, as the value of IGrl increases. At still larger values 
of IGrl, the flow profiles become more complex, with more 
recirculation regions ; these can be dealt with in a similar fashion 
to the work in this study, but are not considered here. The 
method described in the previous section becomes unstable after 
only a few steps into the reverse flow regions and so must be 
adapted. The first stage in the modification is to construct an 
approximation to the solution of the governing finite-difference 
equations, subject to the given boundary conditions. The 
approximation ensures that information only travels in the 
direction of the flow by replacing negative velocities with zero 
velocities in the evaluation of the next streamwise step. This is 
analogous to replacing the streamfunction by a monotonic 
increasing function with 0 ~< ~b~.j ~< 1 and ~ + 1 j >I ~.j,  for all 
i = 1 , . . . ,  N. After the evaluation of the variables at this step 
the original values of the streamfunction are replaced at the 
previous step. The approximation is obtained for 0 ~< X ~< 1 
and from the start of the reverse flow region, Y = Yb, to a 
location, Y = Yr, where the approximation has converged, 
within a given tolerance, to an approximate solution. This 
tolerance criterion is given by 

3N--  1 ~ i = 1  [ (0Lj f -  O~,jf-i + (ta,,jf- ~i,j,_l) 2 

+ x/(Oi. j , -  Oi.jf_t) 2] < e  (21) 

where Jr corresponds to the streamwise location Yf and the 
finite-difference variables are obtained using the approximation 
procedure. The value of e is usually taken to be 0(10-s ). It is 
assumed that over the distance Yf the development lengths are 
sufficiently large to ensure that the final solution at Yf is within 
some tolerance of the fully developed solution. This can be 
checked once the solution procedure has converged and the 
value of e is decreased if Equation 21 is not satisfied. 

To ensure that the correct information is swept downstream 
in the iteration procedure, a far-stream condition must be set 
in the recirculation region. This condition is chosen to be the 
fully developed flow and buoyancy profiles, which are given 
analytically by Equations 14 and 15, and is set at a streamwise 
position given by j = jf + n. However, to ensure the stability 
of the method, the far-stream boundary condition must be 
consistent with the numerical scheme. Hence, using the 
analytical solution as an initial estimate, the solution to the 
finite-difference problem is found by iterating on Equation 11 
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and using the boundary conditions (Equations 16 to 19), with 
j = j f +  n, together with the following equations for 
i = 2 , . . . , N :  

1 
n ?  ÷, = 

2 + H .~ .s 
- 2K (~bi+l - ~k~-t) 

GrH *s 
× n;~x + n ? _ , - - - f - ( O , + l -  07-1) 

H o',(,t,*s *s ) - ~,_,) -t- ~ " i  ~v i+ l  (22)  
/ 

1 
o?  ÷~ = 

2 _+ PrH (~k;{., - ~ , _ , )  

2K  

., PrH ., 
× o7:, +o,_~ + ~ - ( ~ , , + 1 - ~ ? _ ~ )  

PrH ,, ,, ,, ) 
+ 2K 0~ ( $ i + 1 -  ~bi-t) (23) 

/ 

where the positive sign is taken if there is forward flow at the 
$ $ grid point t 0.e., ~bi-1 < $i+ 1 ) and the negative sign is taken if 

there is reverse flow at the gnd point z (i.e., ~b~ ~ _ 1 > ~b~. t ). The 
asterisk (*) denotes the finite-difference variable for the 
fully-developed flow. This pointwise approach is consistent with 
the iteration procedure that is used in the next step of the 
solution method and is preferred to a Gaussian elimination 
approach for reasons considered later. 

There may be points where the solution obtained by the 
approximation at Yr predicts forward flow and the fully 
developed solution predicts reverse flow. As shown in Figure 
2, for the case N = I0, if the fully developed solution is imposed 
on the streamwise location Yf, then the information at the point 
in the region P is never included in the solution, since the 
direction of the marching is determined by the flow at the points 
on the previous streamwise location. In this paper, N is taken 
to be 40, and so the number of points in the region P is greater 
than that shown. In the diagram the dotted lines represent the 
flow as determined by the approximation, while the unbroken 
lines represent the flow in the more accurate solution. The 
nature of the approximation causes insufficient flow to travel 
downstream, and hence the approximate recirculation regions 
are always narrower than the actual recirculation regions. 

This problem is overcome by using a blending region between 
the final streamwise location obtained by the approximation 
Yf and the fully developed solution. It may appear that more 
accurate solutions would be obtained by using a region scaled 
to infinity. However, since Equations 1 to 3 only possess single 
derivatives in the streamwise direction, convergence by this 
method is extremely slow. Hence, in this study, the blending 
function is defined by 

Aijf+m = A* + (As,jr- A*) 1 -- for 0 ~< m ~< n (24) 

where A is each of the variables ~k, f~, and 0 in turn, and n is 
the number of added streamwise steps in the blending region. 
Hence, A~.jf+, is the fully developed solution, A~*, and A,.jf is 
the value of the variable obtained by the initial approximation 
at Y = Yr. The blending function is a parabola in Y, with a 
turning point, and hence a minimum rate of change, at the final 
streamwise location corresponding to j = j f  + n. This is exactly 
what is required in the final solution, where the streamwise 
derivatives of the variables decrease with the value of Y. 
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Figure 2 A schematic diagram showing the initial approximation 
and the final solution 

The number of extra streamwise locations, n, is chosen so 
that the changes in the streamwise derivatives across Y = Yf 
are consistent with the corresponding changes at the previous 
streamwise location. This is achieved in the following manner. 
The difference between the solution at Y = Yr and the fully 
developed solution is characterized by a where 

[ ( 0 ?  - O~.s,) ~ + ( a t  - a ~ . , )  ~ 
3 N -  1 ,q i=1 

+ x/C0,* - 0 , , , ) q  = ~ ( 2 5 )  

If the value of a is taken to be 0 (10-s ) ,  then the value of tr is 
usually 0(10-6) .  The root mean square error between the 
solution at adjacent streamwise locations is defined, on 
convergence, by ~ in Equation 21. Now, by substituting m = 1 
into Equation 24, an equation is obtained relating n to the 
appropriate errors at each transverse location 

Ai , j t+  1 - -  A i , j t  _ 2 1 
I- (26) 

Ai,j¢- A* n n 2 

and so for consistency n is chosen to satisfy 

Although the variables themselves are approximately correct 
in the blending region, the derivatives of the variables are not 
as accurate. Hence, increasing the number of streamwise points 
in the blending region increases the size of the region for which 
the initial estimate is not as accurate as the initial 
approximation. Consequently, a moderate value of n that 
satisfies Equation 27 is chosen. In this study, n is taken to be 
between 20 and 50. 

The next step of the solution procedure is to construct the 
finite-difference equations depending on the direction of the 
flow at a given point. These equations are then iterated upon, 
using the previous approximation as an initial estimate to the 
solution, until convergence is achieved. The equations are dealt 
with in a pointwise manner so that the relatively large 
inaccuracies in the reverse flow region and near the wall are 
not swept throughout the flow. This method for dealing with 
the iteration problem alters the values of the variables far less 
radically at each sweep than a Gaussian elimination method 
would, and hence the pointwise method is more stable than 
the matrix method. To explain the method in more detail, the 
situation of reverse flow at the center of the duct is investigated. 

A downstream sweep is made in the region of reverse flow 
in Yb ~< Y ~< Yf, using information from the previous upstream 
location, i.e., using forward differencing. Equations 11 to 13 
are not linearized, since the nonlinear terms can be replaced 
by their values at the previous iteration, hence the po.intwise 
equations are given by 

07. ; '  = 1 n ~ 
(~t+ ,., + ~ t - , . j )  - T a,'.., ( 2 8 )  

at . ; '  = 

0 U '  - 

GrH 
, . j  + a t . -  , . j  - ~ ( ¢ + , . j  - ~_ , ,~ )  

2 +  H 
2 K  ( e L  , ,j - ¢ i -  1,j) 

(°, × i+ 

H 
- - -  ( ¢ L , j  - ' P f - , , j ) ~ , j + ,  

2K 

H . . . .  ) 
+ 2K ( a i ÷ l °  - a i - ld ) (OiJ+l  - 014) 

1 

PrH 
2 + (1~¢I* l , j  - -  l/Jr-- 1,j) 

2K 

PrH 
x ~+,.j + ¢_, j  - ~ -  (OLI.j - eL,.,) 

PrH 
$ s 

2K ( ~ / i ÷ l . j  ~ ' l i - l , j )O~ i , j+ l  

(29) 

- ) + ~ ( ~ + l j  - ~- l , j ) (~k[ j+ l  - ¢ [ j )  (30) 

The boundary conditions consist of the conditions at X = 0, 
given by Equations 16 and 18, together with the values of the 
variables at the first point of the forward flow region. If X = HI 
is the first point at any particular streamwise location at which 
forward flow occurs, i.e., for all i I> I, ~b~+t. j > ¢ i - l j  and for 
all i < I, ~bi+ 1j ~< O i - i j ,  then the boundary conditions for the 
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downstream sweep are given by 

~'fa = ~k~,j, ~Lj = t'~t,j, 0L~ = ~,j (31) 

where u refers to the values calculated at the previous upstream 
sweep. 

Similarly, in the upstream sweep the equations are obtained 
using backward differencing. They are solved in the forward 
flow region using the boundary conditions at X = 1, given by 
Equations 17 and 19, and the values of the variables at the last 
point of the reverse flow region that were calculated at the 
previous downstream sweep, i.e., 
~bl- 1,. /= d = fZd ~bl-xa, QI-I . j  I-1,j, 01-xa = ~ - L j  (32) 

where d refers to the values calculated at the previous 
downstream sweep. 

Convergence is assumed to be achieved if 

I /N,+I yr+~ 
~ ~ r ,l,~. +. l ~ 2 I (')s. +. l s 2 - 'P,a) + - fzij) X/~ J=jb . . . . .  J ' " " J  

+ x/(~,~" - ~a) 2] < 6 (33) 

where s refers to the sth iteration, with one iteration consisting 
of an upward and downward sweep. The total number of 
variables in the iteration procedure M is given by 

M = (3N - 1)( j r  + n - - Jb  + 1) (34)  

where Jb corresponds to the streamwise location Yb. The 
iterative procedure is repeated until convergence is achieved, 
where 6 is usually taken to be about 10 -7. This method allows 
for the gradual alteration of the position of the reverse flow 
region that is required for stability of the numerical scheme, 
whereas it was found that a Gaussian elimination method, 
together with S.O.R. techniques, did not converge. The 
pointwise method is far more robust than a full matrix method 
(Jones and Ingham 1991 ) and is necessary in order to ensure 
that the upstream boundary condition is slowly incorporated 
into the solution. 

Reverse flows adjacent to the duct wall are dealt with in a 
similar manner and are therefore not described here. 

R e s u l t s  

The results presented in this paper are calculated using a 
finite-difference grid with 40 uniform steps across the duct and 
between 40 and 400 steps of variable length along the duct. A 
numerical comparison between these results and those obtained 
using half the step-size across the duct would suggest that the 
solutions for ~b that are obtained using N = 40 are accurate to 
within 0.1 percent at each nodal point, with the greatest 
inaccuracies occurring near the entrance of the duct. The initial 
streamwise step length used in the calculation is 2.5 × 10 -4. 
The numerical scheme becomes unstable if this step-size is 
reduced below 1.0 x 10 -4, and this can only be overcome by 
decreasing the transverse step-size. 

The character of the solutions depends on whether the free 
convection effects aid or oppose the forced convection effects, 
distinguished by whether the temperature increases or decreases 
with height (i.e., Gr < 0 and Gr > 0, respectively). This differs 
from the constant wall temperature case (Ingham et al. 1988a, 
1988b), where the solution character depends on a combination 
of the change in temperature at the inlet and the direction of 
the streamwise velocity (i.e., Gr/Re).  In the linear wall 
temperature case, the solution is independent of the direction 
of the mean flow and depends only on the orientation and 
strength of the temperature gradient. 

Combined convection in a vertical duct: A. T. Jones and D. B. Ingham 

The results in this paper are obtained using a value of unity 
for the Prandtl number, Pr, in order to compare the results to 
previously published work. However, a few test calculations 
have been performed for 10 -2 ~< Pr <~ 102, and the numerical 
technique worked efficiently in all cases. The results obtained 
for the upstream flow can be compared to the fully developed 
velocity and buoyancy profiles given in Equations 14 and 15. 

For the smaller recirculation regions shown here, e.g., 
Gr = - 5 0 ,  the number of iterations that are required for 
convergence is generally between 400 and 600, while for the 
larger recirculation regions, e.g., Gr = - 7 5 ,  this may increase 
to 1,000 for the same level of convergence. 

The results are presented in a manner that indicates the effect 
of varying the governing parameter, Gr. In Figure 3, velocity 
profiles are shown for Gr = 0, - 2 5 ,  - 5 0 ,  and - 7 5  at the 
streamwise locations given by Y---0.0, 0.26, 0.51, 1.02 and 
1.47. The forced convection case corresponding to Gr = 0 is 
shown for comparison with the effect of buoyancy-aided flow 
(Gr < 0). These values of Y are indicative of the change in the 
velocity profiles as the fluid progresses along the duct. By 
Y = 1.47, the velocity profiles for the values of Gr shown in 
Figure 3 are graphically indistinguishable from the fully 
developed profiles in Equation 14. It can be seen that the free 
convection effects accelerate the streamwise velocity near the 
center of the duct, thus causing the velocity near the walls to 
decrease. As the value of Gr decreases, these effects become 
more marked, which eventually leads to separated flow at the 
wall for sufficiently large negative values of Gr. 

Figure 4 presents the case where natural convection opposes 
the pressure force, i.e., Gr > 0, and velocity profiles are plotted 
for Gr = 0, 300, 450, and 600 at similar points along the duct 
to those shown in Figure 3. It can be seen that the effect of 
natural convection is to decelerate the flow around the center 
of the duct. The effects increase with the strength of the 
buoyancy force with respect to the viscous forces (i.e., increasing 
Gr). By Gr = 450, the effects are significant enough to cause 
recirculation at the center of the duct. 

There are no reverse flow regions in the fully developed flow 
for -31.3 < Gr < 389.6. At values of Gr outside this range, 
the flow separates and the recirculation regions become more 
extreme as the value of IGrl increases. For Gr < -913.9 and 
Gr > 6234.2, more than one recirculation region exists in the 
fully developed flow. 

The flow average temperature is defined at any particular 
streamwise location by Shah and London (1978): 

T m = v T  dx (35) 

Hence, writing T and v in terms of ~, and 0, the flow average 
temperature can be described by 

Ore= ~10i]lOd X (36) 
Jo a x  

This integral can then be evaluated using Simpson's rule, and 
its value is plotted as a function of Y in Figure 5a for the values 
of Gr considered previously. It can be clearly seen that the flow 
average temperature at any given strcamwise location decreases 
with increasing values of Gr, implying that heat transfer by 
convection takes place more efficiently when free convection 
effects oppose the forced convection effects. As Y--* or, the 
value of 0m increases towards the fully developed value (Jones 
1992), at Y - 4 it is within 10 -2 of this value, while at Y = 10 
the difference in the two values is less than 10- 3, corresponding 
to less than 0.2 percent error. 
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Applying Newton's law of cooling at the wall, namely, 

h ( T  m - 7".) = - k  d~x x=a (37) 

and defining the local Nusselt number by Nu = hd/k, where h 
is the local heat transfer coefficient and k is the thermal 
conductivity of the fluid, leads to 

d0 

(~X x= 1 Nu (38) 
0m 

Figure 5b displays plots of Nu as a function of Y for the 
same parameters as in Figure 5a. It can be seen that the value 
of Nu is large for large positive values of Gr, again implying 
that the heat transfer is more efficient in flows where the free 
convection effects oppose the forced convection effects. The 
behavior of Nu as a function of Y is characterized by the sign 
of Gr. For Gr > 0 there is an initial decrease in the value of 
Nu as the value of Y increases, and this is followed by an 
increase in the value of Nu. Thus a minimum value of Nu exists. 
Barozzi et al. (1984), as well as some of the references cited in 
this paper, suggest that in these circumstances instabilities may 
occur in the flow, and hence steady recirculating flows may not 
exist near the center of the duct. As explained earlier, the 
stability of these flows is beyond the scope of this paper, and 
conclusions about the stability of these flows at moment can 
only be speculative. As the value of Gr increases, the streamwise 
location at which the minimum Nusselt number occurs tends 
towards the duct entrance. Hence, the streamwise location at 

which heat transfer by convection is least efficient is near the 
duct entrance. For Gr < 0 there is a steady decrease in the 
value of the Nusselt number, and hence the heat transfer, along 
the duct. 

For both Gr < 0 and Gr > 0, the value of Nu tends towards 
the fully developed value defined by 

1 
Nu = - -  (39) 

0m 

as Y -* ~ .  At Y = 4, the Nusselt number is within 10 -2 of the 
fully developed value, and at Y = 10, it is within 10- 3 of this 
value (i.e., less than 0.3 percent error). 

The friction factor, f ,  is a measure of the frictional pressure 
drop. in the system and is defined at any streamwise location 
by Ozi~ik (1985) as follows : 

8vdv (40) 
f =  v~ dxlx=d 

Substituting v = vmV, V = O~,/OX, and x = dX, and using 
Equation 1, Equation 40 becomes 

8 ~lx= 1 (41) 
f = -R--e 

Figure 5c shows the variation in Re f for the cases outlined 
for Figures 5a and 5b. For Gr < 0 (Gr > 0), the friction factor 
times Reynolds number is less (greater) than for the forced 
convection case. The friction factor itself depends on the 
Reynolds number, so for flows in the opposite direction to those 
indicated in Figure 1, i.e., Re < 0, the friction factor has the 
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and 600 

opposite sign to those shown here. For a given value of Re > 0, 
the friction factor is large and positive when the centerline 
velocity is at a minimum and hence the streamwise velocity 
peak near the duct wall is at a maximum. 

The strength and position of the recirculation regions are 
characterized by the width of the fully developed flow region 

and the streamwise location at which reverse flow first occurs, 
respectively. In the fully developed flow, the transverse point, 
X = Xaiv, at the extreme of the reverse flow region is given by 

cos(Ratt/4Xdiv) = cosh(Ratl/4Xdiv) (42) 

For -389.6 < Ra t < 31.3, i.e., -31 .3  < Ra < 389.6, Equation 
42 has no solutions in the range 0 < Xdl , ~< 1. However, for 
Ra t > 31.3, i.e., Ra < -31.3,  the width of the recirculation 
region in 0~<X~<I  is given by W = l - - X d i v ,  while for 
Ra t < -389.6, i.e., Ra > 389.6, it is given by W = Xdi,. Figure 
6 shows W as a function of Gr, where Gr = Ra = - R a  t if 
Pr = 1. It can be seen that W increases more rapidly for Gr < 0 
than for Gr > 0; even for Gr = 1,000, the recirculation region 
still occupies less than 1/5 of the width of the duct, while for 
Gr = 100 the recirculation regions occupy almost half the width 
of the duct. However, it is interesting to note that for these 
values of Gr the actual widths of the recirculation regions in 
- 1 ~< X ~< 1 are approximately equal. For Gr < 0 there are 
two recirculation regions adjacent to the duct walls, while for 
Gr > 0 there is one central recirculation region. Thus, the actual 
width of each recirculation region is given by W for Gr < 0 
and 2W for Gr > 0. As the value of IGr[ increases, there is a 
steady increase in the value of W for Gr < 0. However, for 
Gr > 0 the value of W increases rapidly as the value of IGrl 
increases, until Gr is approximately 500. The increase in the 
value of W is then more gradual for 500 ~< Gr ~< 1000. 

Figure 7 shows the streamwise location, Yb, at which 
separation of the flow first occurs as a function of Gr. The 
value of Yh decreases as the value of IGrl increases (taking Yb 
to be infinite for values of Gr in the range -31.3  < Gr < 
389.6). There is a rapid decrease in Yb for 389.6 < Gr < 500, 
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occurs, as a function of the Grashof number, Gr 

whereas the decrease in Yb for - 50 < Gr < - 31.3 is steadier. 
By studying the corresponding value of Yb for various actual 
duct widths (i.e., W for Gr  < 0 and 2W for Gr > 0), it can be 
seen that when the widths of the recirculation regions in the 
fully developed flow are the same, then separation occurs nearer 
to the duct entrance for Gr > 0 than for Gr < 0. This is due 
to the increased heat transfer characteristics of Gr > 0 
compared with Gr < 0, implying that the flows develop more 
quickly for Gr > 0. 

Since the value of the Nusselt number depends on both the 
velocity and temperature distributions at any given streamwise 
location, an efficient assessment of when the flow becomes 
thermally and kinematically fully developed is when the Nusselt 
number is sufficiently close to its fully developed value. In this 
study this tolerance value is chosen to be 95 percent of the fully 
developed value. Figure 8 shows the corresponding develop- 
ment lengths as a function of Gr. By using a Levenberg- 
Marquardt  method (Press et  al. 1986) to fit a nonlinear curve 
through these data points, it is found that the development 
lengths are given approximately by 

Yd,, - 0.722 tanh l O 0 0 . / , , , | R e |  d (43) 
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Figure 8 The velocity development lengths, Yd.v, as a function of 
the Grashof number, Gr 

Over the range of values of Gr and Re given by 
- 7 5  ~< Gr ~< 600 and Re >> 1, Equation 43 generates values for 
Ya=v that are accurate to within 10-2 of the results obtained 
from the parabolic solution. 

Conclus ion 

In this paper, numerical solutions are obtained using parabolic 
methods for solving mixed convection flows in vertical 
parallel-plate ducts with linearly varying wall temperatures. 
Attention is concentrated on situations where the effects of free 
convection are large enough to cause recirculating flow near 
the center of the duct or adjacent to the duct walls. Situations 
where the fully developed flow profiles include regions of reverse 
flow are dealt with using an iterative technique, and a suitable 
approximation is suggested as an initial estimate. Some 
adaptations to ensure the stability of the numerical scheme are 
described. 

It is shown that heat transfer by convection increases as a 
function of the Grashof number, Gr, and that development 
lengths decrease as the value of Gr increases. This agrees with 
the expected conclusion that heat transfer is improved if the 
free convection aids the forced convection adjacent to the walls. 
A correlation is given for the development lengths when the 
Prandtl number has a unitary value. 

The techniques presented in this paper may be extended to 
non-Newtonian fluids and other geometries, in particular, 
cylindrical geometries such as pipes and annuli. 
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